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ABSTRACT 

Let G be a locally compact abelian group and F its dual group. For any 
closed H _~ G denote the algebra of restrictions to H of Fourier transforms 
of functions in LI(F) by A(H). This paper considers certain Cantor like sets 
in R and H Z,.~s ~ and gives some necessary algebraic criterion for natural 
isomorphisms of their restriction algebras. 

0. Introduction. Let R be the real line and A = A(R) the space of  continuous 
function on R which are the Fourier transforms of functions in L~(R). A(R) is a 

Banach algebra when it is given the U(R)  norm. Beurling and Helson [2] estab- 

lished that every automorphism of A arises from a map q5 by f ~ f o  49 where 
49(x) = ax + b. For a closed F _ R one defines A(F) as the restrictions of  f ~ A 

to F with the norm of g ~ A(F) the infimum of the norms of  elements of  A whose 

restrictions are g. One may ask for existence and characterizations of  isomor- 

phisms between Banach algebras A(F1) and A(F2). In [5] it is shown that such an 

isomorphism of norm one must be given by f ~ f o 4 9  where 49: F 2 ~ F  1 is 
continuous and for some complex number c of  modulus one ce 14' is a restriction to 
F 2 of  a character of  the discrete reals. Further, if F 2 is thick in some appropriate 
sense the character is continuous. 

In this paper we shall consider isomorphisms of restriction algebras of  sets of 

the form 

F~ = { ]~ ~jTJ: e i either 0 or 1} 

where 7 < 1/2. We shall obtain necessary algebraic conditions on 71 and 72 for 

A(Fr,) to be isomorphic to A(Fr~ ) induced by 49: ]~efl~ ~ ]~,efl~. In particular if 
71 and 72 are algebraic they must be conjugates. We shall also consider sets 

E,, ~_ 1-I~°z,,t~ of  the form 

E,, = {x: j th  coordinate is 0 or 1}. 

We shall obtain necessary conditions for isomorphisms of A(E,,) with A(Fr) 
to be induced by 49: x ~ ]~xfl J, where xj is the j th  coordinate of x. We shall also 

study necessary conditions for 49- ~ to induce isomorphisms. 

1. Definitions and notations. For  background material and notation not de- 
fined here we refer the reader to [7] and [15]. 
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In this paper G will always be a locally compact abelian group with dual group F. 
If g and ~ are elements of G and F respectively, the value of the character ~ at 
the point g will be denoted by (~, g). 

When we have a sequence of compact abelian groups G j, we shall denote their 
direct product (complete direct sum [15]) by 1-IGj. If Fj is the dual of G j, then 
the direct sum [15] ]~Fj is the dual of I-[Gj. The jth coordinate of elements g 
of y[Gj or T of ~F j  will be denoted by g~ and ~j. One has: 

g) = I-l( j, g j) 
where all but a finite number of elements in the product are 1. 

We shall be dealing with the following basic groups: 
(i) R will denote the additive group of reals. R is isomorphic to its dual under 

the pairing given by 
(y, x) = exp (xy), 

with x, y ~ R and exp(xy) = e 2~x~. 
(ii) Zn for n ~ 2 will denote the additive group of integers rood n. Zn is also 

isomorphic to its dual under the pairing given by 

(r,s) exp(rs/n), 
r,  s E Z  n. 

We shall adopt the notation and assume familiarity with the results in [15] 
about LI(G), M(G), the Fourier transforms f and/2 of f ~ LI(G) and # ~ M(G), 
and the convolutions f • g and/z • v of functions in LI(G) and measures in M(G). 

Let A = A(G) be defined by 

A(G) = {f: f  ~ LI(F)}. 
A(G) is a Banach algebra under pointwise multiplication and with norm U" HA 
defined by li]lt =llyll,,(r) and is isomorphic to L'(F) under .. For a closed 
set E _ G define the restriction algebra 

A(E) = {f/E: f ~ L'(r)} 
with norm I]' II~(E, defined by 

II h II (E, = inf{ II:h: : /E = h}. 

A(E) is again a Banach algebra under pointwise multiplication. Set 

I(E) = ( f : f / r  = 0 and f ~La(F)} 

A(E) can be identified with the quotient algebra A(G)/I(E). 
The dual space of A(G) is denoted by PM (or PM(G)). Its elements are called 

pseudomeasures. Each S~PM can be identified with a function g~LC°(F) as 
follows. The action of S e PM as a linear functional on f e  A(G) is given by 
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(S, f )  ---- fy f(}') ~('y) dgr. 

We shall denote by II S II,M the r~(O norm of S Thus PM under I1" I1,~' is 
identical with L°°(F) under the sup norm. 

Since A(E) is the quotient of A(G) by I(E), the dual of A(E) consists of those 
S ~ PM which annihililate every function in I(E). We shall denote this dual of 
A(E) by N(E). The set of all # ~ M(G) with support in E we denote by M(E). 
M(E) can be considered a subspace of N(E) with ~ , f ) =  ffdg. The two de- 
finitions for p coincide. 

If GI and G2 are locally compact abelian groups and El and E 2 are closed 
subsets of Gx and G2 respectively we say that O: A(Ez)~ A(E2) is an isomorphism 
into iff it is an injective algebraic homomorphism and is continuous. If the range 
of • is dense in A(E2) there exists a homeomorphism ~b: Ea--* E 1 with O f  = f  0 q~ 
[9]. We always denote the adjoint of • taking N(E2) into N(EI) by O*. 

Symmetric sets in R are defined as follows. For any sequence r = {r(j):j = 1,--.} 
of positive real numbers with the property 

c o  

Z tO) < r(k - 1) 
k 

we define the subset F, of R by 

The representation of the elements of F, as an infinite sum is unique. For each 
positive integer k, the subset F,kof F, is defined by 

F~ = e s r(j): ~j either 0 or 1 . 

We define F(l, n) by 

F(l,n) = {x: x = 

We define the subspace NI(F,) of N(F,) by 

co 

N~CF,.) = U M(~). 
k = l  

For v ~ Nx(F,) we note 

Ilvll,~--sup I x v(~ x ~,~)})exp(x. X~,~)). 
x e j  

For any given sequence m = {m(j):j = 1,2,...} of positive integers we define 
the subset E ,  of I-[sZmo) by 
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E m = {x: x e I -  I Zmu); xj either 0 or 1}. 

For each positive integer k the subset EL of Em is defined by 

E k =  {x: xeEm; x~=O if j > k}. 

We define E(l, n) by 

E(l,n) = {x: x e E  and xj = 0 i f j  < l or j >  n}. 

Define the subspace NI(Em ) of N(Em) by 

NI(Em) = 

For v e NI(Em) we note 

where ~j are mU)th roots of unity. 

o® 

LJ M(Eb" 
k = l  

Israel J. Math., 

The following maps will be called standard homeomorphisms: 
(i) tk: Em ~ F, takes x --* ~, x~r(j). Denote the inverse of ¢ by ~b. 
(ii) ¢: F, ~ F~ takes ~ eir(j) --* ~, ejs(j). 
Let 0 be a function that represents any of the standard homeomorphisms. 

We note that 0 induces maps between C(E,) or C(F,) and C(Fr) by 

O(f )  = f o  0 .  

The adjoint O* is a map between M(F,) and M(En) or M(F~) and in particular 
is a map between N1 (F,) and Nt(E,, ) or Nt(F~) given by 

o*(v)({0(x)}) = v({x}). 

We shall frequently write E for Em, E k for Ekm, F for F, and F k for F, k. 

2. Necessary conditions for isomorphisms. Let H~ and/ /2  represent any of the 
sets Em or Fr and 0: Hj -~ H2 the standard homeomorphism. If O: C(H2) ~ C(HI) 
has O(A(H2)) ~ A(H1) then O is continuous as the A(H) are semisimple [9, p. 761. 
Let us call an isomorphism from A(H1) to A(Hz) induced from 0 by f --* f® 0 
a standard isomorphism. The existence of a standard isomorphism taking A(Hz) 
into A(H1) is therefore equivalent to ®(A(H2)) ~ A(H1). 

If ® is an isomorphism from A(H2)~ A(HO then O* must be a bounded 
linear function from NI(HI)~NI(H2). The following central lemma utilizes 

this fact. 

LEMMA 2.1. Let O: H1--* Hz be a standard homeomorphism. Let ® be the 
induced map from C(H 2) ~ c (n  l) 

o(f )  = f o  0, f c(u2). 
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Suppose O(A(H2))__q A(H,).  Let {l(j)}, {nO)} be sequences of integers with 
l(j) < n(j) < l(j + 1) and for  all j,  n(j) - l(j) < B for  some constant B. Then, 
given any 8 > 0 there does not exist a sequence oJ # j~  M(HI(I(j) ,  n(j))) with 

Proof. 

Case 1. 

II o* , . l l .~ / I1 , .11 ,~  > I ++. 

Assume H2 = Em for some sequence {re(j)}. We may assume that 
II g~ lieu = 1. Form the measure 2k ~ Nt(HI)  by 

Then 

~-k ----/ t l* "'" */~k. 

II ~ I1~ ~ L 
Since H 2 = Em, l(j + 1) > n(j), and O is a standard isomorphism, we see that 

k 

1 

which contradicts the continuity of  O*. 

Case 2. Assume H2 = F, .As before assume that [l/~j I[eu= 1, for all j. We shall 
define 2 k inductively. Let 2 k_ 1 be defined as a convolution of  a subsequence of the 
gj by 

"~'k- 1 = # j ( l ) *  "'" * /2 j tk -  1)" 

Assume that 

I o * 0 , _ , ) I I , M  ---- (1 + 8/8) ' -1  

Choose an a > 0 so tha t  ( 1 -  e) (1 + 8/4)> 1 + 8/8. Since O*(2k-0(x)  is an 
almost periodic function of x there is an N so that for any real y 

I o*<x~-,)(x)l > ( 1 -  ~) II o*<~-,) II,M. 

(2.2) N "  r(l(j(k))) < 8[16n2 a .  (B + 1). 

Pick a y so that I®*(um)(y)l > 1 +8/2. There is some x with I x - e l  <=N 
for which 

I O*(~_  l) (x) [ ->_ (t  - O ( t  + 8/8) ~-1. 

sup 
t~,-yt--m 

Pick j(k) so that 
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However 

l - 

2 ~.  &r. (B + 1). N .  r(l(j(k)) 

which by (2.2) is less than or equal to e/4. Set 

Then 

2k : ~k-  1 '~ #j(k)" 

However 

A A A 

~ (1 + e/8)~-'(1 -- ~)(1 + 8/4) 

a (1 + e/S) ~. 

k 

s = l  

< 1 .  

Therefore, as k-~o~ and the continuity of O* is 
contradicted. Q.E.D. 

The next lemma is found in [5] but we include a proof for the sake of com- 
pleteness. We let Ex, E 2 be compact subsets of locally compact groups Gt, G 2. 
Let q~: E 2 ~ E 1 be a homeomorphism. Assume that 0 ~ E2, 0 e Et and ~(0)= 0. 
Let O be the map from A(E~)~ C(E2) with f - - * f o  ~. If ),~ FI we note that 
~t = ~/E1 is an element of A(E1) and define (I)(~) by ~(~1). 

LEMMA 2.3. I f  O:A(E1)~A(E2) is an isomorphism tnto of norm 1, then 
for every ~ e F1, 0(~) is the restriction to E 2 of an element of the Bohr compacti- 
fication of F 2. 

Proof. Since E, is compact we see by [15, p. 53] that IIrUA, ,,--1. 
Therefore Let {f.}~A(Gz) be a sequence of elements with 

1 + 1/. and f.l 2-- Consider the f ,  as measures o n  F2, the 
Bohr compactification of F2. Since F2 is compact, there is a # ~ M(F2) that is a 
weak* limit point of {f,}. We see that []/~ 1 and - -  However 
by the assumption that ~b: 0 -* 0 we see #(0) = 1 and hence # is a positive measure. 
From [5, p. 123] we see that there is a closed subgroup G~, with E2 = G, ~ G2 
on which/~ is multiplicative. By [14, p. 138] O(~,) is the restriction to E2 of an 
element of I~2. Q.E.D. 

THEOREM 2.4. Let {re(j)} be a bounded sequence of integers, d p : E , ~ F  
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a standard homeomorphism. Then the induced map @ : C ( F ) o  C(E) does not 
take A(F) into A(E). 

Proof. Assume @(A(F)) ~ A(E). 
Since re(j) is bounded, we can find an infinite number ofj( i )  with m(j(i)) = n. 

Consider the two point measures a i e NI(E), 

1 
a , { 0 }  = 

1 exp(1/3n) ~,{xs(o} = -~ 

where for any integer s, x~ = 6 3 . It is easy to see that 

II ~,11,~--< 1-1 /c ,  
where C is a constant only depending on n. However 

II**(~,) II,~ = 1 

which contradicts Lemma 2.1. Q.E.D. 

If  V is a constant with V < ½ and {r(j); j = 1, ...} is the sequence defined by 
r(j) = V J, F, is called a symmetric set of constant ratio. Our next theorem concerns 
standard isomorphisms between two restriction algebras of symmetric sets of 
constant ratio. 

THEOREM 2.5. Suppose that ~<½,  2<½,  r( j )=y j, and s(j) =)~ s, dp:F~-~F, 
the standard homeomorphism. Then if the induced map ~P: C(F,)-+ C(F,) takes 
A(F,) into A(F~), y satisfies the irreducible equation of 2 over the rationals. 

Proof. If 2 is transcendental the theorem is vacuously true. Otherwise, let 
~,~- ~ C~x J with Cj integers, be the irreducible equation of 2. 

induces a map ~ '  from A(F~ .-+ A(F~. If the norm of @' is greater than one, 
there would be a v ~ M(F~) with 

II **(v) I1,~/II, II ,,~ > 1 Jr 8. 
Set 

We see that 

vj({:x}) = v({x}). 

--II,II,M IIv, ll,~ 
and 

II ** (v,) II.~, -- II ** (v)II., 
which contradicts Lemma 2.1. Therefore ~ '  is of norm one. Let ~b be the standard 
homeomorphism taking Fs ~ F, and ~b' its restriction to Fs k. Lemma 2.3 shows 
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that there is for each x ~ R a (not necessarily continuous) character ~x of  R for 
which 

~ ( 2  j) = exp(x~J); j = 1, ...,k. 

Since ]~k C j_ x )-J = 0 

Since x is arbitrary 

I]t x Cj_I •j = 1 

k 

1-I Ox( J) c J - '  = 1 
1 

k 

k 

Z ci_ v 1= 0 
1 

and hence V satisfies the irreducible equation of 2. Q.E.D. 

It is easy to see by Kronecker's Theorem [4, p. 99] that if ), and 2 are conjugates 
then the map 4: Na(F~)-~ NI(Fr) and the map ~b-1 are bounded. We have not 
been able to obtain isomorphisms of A(Fr) and A(Fs) when V and 2 are conjugates. 

THEOREM 2.6. Let ~, <½, r(j) = 7 - J ; j  = 1,2,.-..  Let m = m(j); j = 1,2,.. .  be 
any sequence of positive integers, ~ :Fr~Em the standard homeomorphism. 
Then if the induced maptF: C(E,,)-~ C(Fr) takes A(Em) into A(F~), ? must be 
transcendental. 

k j Proof. Suppose t~(A(E,,))c A(Fr) and ? is algebraic. Let ]~x c j? = 0 where 
the cj are relatively prime integers. 

By diagnolizing one can find a sequence E,,(l(j), l(j)+ 3k) with l(j + 1)> l(j)+ 3k 
and for each r = 0,.. . ,  3k either 

(2.7) 

for all i,j or 

(2.8) 

m(i(j) + r) = m(1(i) + r) 

lim m(l~i) + r) = oo. 
j~oo 

induces the standard isomorphism 

q/': A(E(I(1), l(1) + 3k)) ~ A(F(I(1), l(1) + 3k)). 

We claim that I]V'I] is one. For ease of  notation, denote E(l(j),l(j)+ 3k) by 
E(j) and similarly with F(j). If I[ V '  II > 1 there exists v ~ M(F(1)) with H v ]lPu = 1 
and 
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Let vj~ M(F(j))  be defined by 

It is clear that 

v / r  Ctu)-~"'. x) = v(x). 

IIv, II,M -- fly II,M -- 1 
We see from (2.7), and (2.8) and continuity considerations that for j large enough 

II a.,,(,,,)ll,,,,, > * + ~/2. 
Applying Lemma 2.1 we arrive at a contradiction and hence II W' I[ = 1. Let ~ be 

the character of  I-Izmu) with 

/0 if j ~ l ( 1 ) + k  
(xj 

1 if j = / ( 1 ) + k .  

By Lemma 2.2, ~F'(~tj) is the restriction to F(1) of a character 0 of the discrete 

real numbers. If/(1) < r < l(1) + 3k 

~1 if r ~ k 
0(~l~l) +') 

exp(1/m(l(1)+ k)) if r =  k. 

~ k ,  ,,~l)+r+j 0 for any r. If 0 < r < k - 1 Since ~ c ~ J =  0, then -.,1 ~jr = 

, 0 1 
k 

= 1-I (0 (~ '~"~+'÷J)Y ' 
1 

= exp(ck_,/m(l(1) + k)). 

Therefore r e ( / ( l /+  k) divides ck-, for each 0 < r < k - 1. Since the cj were 
assumed relatively prime and re(j) > 2, there is a contradiction. Q.E.D. 

If  the ~ of Theorem 2.6 is transcendental, then 0:  Nt(F)  -~ N I(E ) is of norm one. 
We do not know if this extends to an isomorphism of A(E) ~ A(F). 
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